材
 料
 熱

 學
 Thermodynamics of Materials ।

Chapter1 Introduction and definition of terms

What determines how matter behaves？\Leftrightarrow Thermodynamics．

1．What determines how matter behaves？
Final Stable State \Leftrightarrow Equilibrium State
Gibbs free energy：Minimum（at specific T，P）
2.
$\left\{\begin{array}{l}\text { Classical thermodynamics } \Rightarrow \text { Macroscopic phenomena．} \\ \text { Statistical thermodynamics } \Rightarrow \text { Microscopic description }\end{array}\right.$
$\left\{\begin{array}{l}\text { Particles ：atoms，electrons，molecules．} \\ \text { Quantum mechanics } \\ \text { Probability（distribution function）}\end{array}\right.$

3．Thermodynamics V．S．Kinetics

Thermodynamics：$\left\{\begin{array}{l}\text { Energy } \\ \text { Equilibrium state }\end{array}\right.$
Kinetics：$\left\{\begin{array}{l}\text { Reaction rate } \\ \text { Metastable state }\end{array}\right.$

4．Thermodynamic systems of materials

（1）material system：
－Unary or／multi－component（binary，ternary，quaternary）
－Homogeneous／Heterogeneous
－Closed／Open
－Non－reacting／Reacting
－Simple／Complex
$\left\{\begin{array}{c}\text { Simple system ：energy changes due to mechanical，thermal，} \\ \text { and chemical variation．} \\ \text { Complex system ：energy changes due to gravitational，electrical，magnetic } \\ \text { and surface effects．}\end{array}\right.$

5. Thermodynamic Variables

$\left\{\begin{array}{l}\text { State functions or process variables } \\ \text { Intensive or extensive variables }\end{array}\right.$

- State function: a quantity that depends on the condition of the system and not on how the system arrived at that condition.
\Rightarrow State function is independent of path.
$\Rightarrow \Delta Z=Z_{\text {final }}-Z_{\text {initial }}=\int_{Z_{i}}^{Z_{f}} d Z$
e.g. P, V, T, X_{k}, S, U, G, H, A
\Rightarrow For a very complex process, $\triangle Z$ can be computed by the simplest path connecting the initial and the final states.
\Rightarrow State function can be expressed by exact differential, dZ.
- Process variable: a quantity that only has meaning for a changing system and its value for a process depends explicitly on the path.
e.g. $\left\{\begin{array}{lll}\text { Work, } & \mathrm{W}(\Delta \mathrm{W}), & \delta \mathrm{W} \\ \text { Heat, } & \mathrm{Q}(\Delta \mathrm{Q}), & \delta \mathrm{Q}\end{array}\right.$
$\delta W=\vec{F} \cdot d \vec{x}$
$W=\int_{\text {path }} \vec{F} \cdot d \vec{x} \quad\left(\int\right.$ or $\left.\oint\right)$

1. $\oint d Z=0$, but $\oint \delta \mathrm{W} \neq 0$
2. Force : $\left\{\begin{array}{l}\text { Pr essure }: P(+P d V) \\ \text { Stress : } \sigma(+\sigma d \varepsilon) \\ \text { Electric : } \varepsilon(+\varepsilon d q) \\ \text { Magnetic }: \mathrm{H}(+\mathrm{HdM}) \\ \text { Surface tension }: \gamma(+\gamma d A)\end{array}\right.$

- "Intensive" property may be defined to have a value at a point in the system. It does not depend on the size of the system.
e.g. P, T, $\mathrm{X}_{\mathrm{k}}, \rho($ density $), \bar{V}, \bar{S}, \bar{U}, \bar{H}, \bar{A}, \bar{G}$
- "Extensive" property depends on the size of the system e.g. V, S, U, H, A, G, nk

6. Concept of state

* $\left\{\begin{array}{l}\text { Microscopic state : statistical distribution of all constituent particles. } \\ \text { Macroscopic state : phenomenological property of a system. }\end{array}\right.$
* Thermodynamic state of the simple unary system is uniquely fixed when teh values of two independent variables are fixed.
* Any two properties could be chosen as the independent variables. P, T are the most amenable to control.
* Consider a pure gas $\quad \mathrm{V}=\mathrm{V}(\mathrm{P}, \mathrm{T})$. Equation of state?

If Eq. of state is known, we can calculate $\triangle \mathrm{V}$.

$$
\left(\mathrm{P}_{1}, \mathrm{~T}_{1}\right)->\left(\mathrm{P}_{2}, \mathrm{~T}_{2}\right), \quad \triangle \mathrm{V}=\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=?
$$

$$
\begin{aligned}
& \therefore \Delta V=V_{2}-V_{1}=\int_{T_{1}}^{T_{2}}\left(\frac{\partial V}{\partial T}\right)_{P} d T+\int_{P_{1}}^{P_{2}}\left(\frac{\partial V}{\partial P}\right)_{T} d P \\
& \text { Path }\left\{\begin{array}{l}
1 \rightarrow b, \quad V_{b}-V_{1}=\int_{P_{1}}^{P_{2}}\left(\frac{\partial V}{\partial P}\right)_{T} d P \\
b \rightarrow 2, \quad V_{2}-V_{b}=\int_{T_{1}}^{T_{2}}\left(\frac{\partial V}{\partial T}\right)_{p} d T \\
\therefore \Delta V^{\prime}=V_{2}-V_{1}=\int_{P_{1}}^{P_{2}}\left(\frac{\partial V}{\partial P}\right)_{T} d P+\int_{T_{1}}^{T_{2}}\left(\frac{\partial V}{\partial T}\right)_{P} d T \\
\quad \Delta V=\Delta V^{\prime} \quad \Delta V \text { is indep. of path. } \\
\quad \mathrm{V} \text { is state function, dV is exact differential. } \\
\mathrm{V}=\mathrm{V}(\mathrm{~T}, \mathrm{P}) \quad d V=\left(\frac{\partial V}{\partial T}\right)_{P} d T+\left(\frac{\partial V}{\partial P}\right)_{T} d P
\end{array} .\right.
\end{aligned}
$$

For any values of $\mathrm{T}_{1}, \mathrm{P}_{1}$, the gas system is at equilibrium only when it has that unique volume, V_{1}, which corresponds to T_{1} and P_{1}.
7. Equation of state of an ideal gas $\left\{\begin{array}{l}\text { Boyle's law : constant T, } \mathrm{P} \propto 1 / \mathrm{V} \\ \text { Charles's law : constant } \mathrm{P}, \mathrm{V} \propto \mathrm{T}\end{array}\right.$

\therefore at T $\left(\mathrm{P}_{\mathrm{o}} \rightarrow P\right)$ Boyle's law: $\quad P_{o} V\left(T, P_{o}\right)=P V(T, P)$
at $\mathrm{P}_{\mathrm{o}}\left(\mathrm{T}_{\mathrm{o}} \rightarrow T\right)$ Charles's law : $\frac{V\left(P_{o}, T_{o}\right)}{T_{o}}=\frac{V\left(P_{o}, T\right)}{T}$
Take: $\left\{\begin{array}{l}\mathrm{T}_{\mathrm{o}}=0^{\circ} \mathrm{C}=273.15 \mathrm{~K} \\ \mathrm{P}_{\mathrm{o}}=1 \mathrm{~atm}\end{array}\right.$
$\therefore \mathrm{P}_{\mathrm{o}} \cdot \frac{T \cdot V\left(P_{o}, T_{o}\right)}{T_{o}}=P \cdot V(T, P)$
$\therefore \frac{\mathrm{PV}}{\mathrm{T}}=\frac{P_{o} V_{o}}{T_{o}}=$ Cons $\tan t$.
Avogadro's hypothesis :Volume per "g - mole" of all"ideal gas" at $0^{\circ} \mathrm{C}$,
$\mathrm{P}=1 \mathrm{~atm}$ is 22.414 l .
\therefore gas constant $=\mathrm{R}=\frac{1 \mathrm{~atm} \times 22.414 \mathrm{l}}{\text { mole } \times 273.15 \mathrm{~K}}=0.082057 \frac{\mathrm{~atm} \cdot \mathrm{l}}{\mathrm{K} \cdot \mathrm{mole}}$
\therefore Ideal gas law (equation of state of ideal gas) :
For one mole gas : PV = RT
For n mole gas : $\mathrm{PV}^{\prime}=\mathrm{nRT}$ molar volume: $\mathrm{V}=\frac{\mathrm{V}^{\prime}}{\mathrm{n}}$
Note: (1) $1 \mathrm{~atm}=101325 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=101325 \mathrm{~Pa}=1013.25 \mathrm{hPa}$
$\therefore 1 \mathrm{~atm} \cdot$ liter $=101.325 \mathrm{~J}$

$$
\mathrm{R}=0.082057 \frac{\mathrm{~atm} \cdot \text { liter }}{\mathrm{K} \cdot \mathrm{~mole}}=8.314 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mole}}
$$

(2) Absolute temperature scale (Kelvin)
$1 \mathrm{~atm}, \mathrm{H}_{2} \mathrm{O}\left\{\begin{array}{l}\text { ice point : } 0^{\circ} \mathrm{C}, 32^{\circ} \mathrm{F} \\ \text { boil point : } 100^{\circ} \mathrm{C}, 212^{\circ} \mathrm{F}\end{array}\right.$
1802 Luis \& Lussac : Thermal expansion coefficient of "permanent gas" is a constant.
Thermal expansion coefficient : $\alpha \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$
Take $\mathrm{V}=\mathrm{V}_{\text {o }}$ at $0^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \therefore \alpha=\frac{1}{273.15} \text { for all gas when } \mathrm{P} \rightarrow 0 \\
& \text { hypothetical gas :ideal gas }
\end{aligned}
$$

\therefore When $\mathrm{T}=-273.15^{\circ} \mathrm{C}$, mole volume of gas is zero,
\Rightarrow low temperature limit

$$
\begin{aligned}
& \therefore \mathrm{T} \equiv 0 \mathrm{~K}=-273.15^{\circ} \mathrm{C} \\
& \mathrm{~T}(\mathrm{~K}) \equiv \mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273.15
\end{aligned}
$$

Charles's law:

